Barisan & Deret

 Nama: Muhammad Reviyata Satria Putra Prawira

Kelas: XI IPS 3

Absen: 17


A. Barisan dan deret aritmatika

Baris dan Deret Aritmatika

Sebetulnya barisan dan deret terbagi menjadi beberapa macam. Tapi, kali ini gue hanya akan membahas mengenai baris dan deret aritmatika.

Di atas tadi sempat gue singgung sedikit mengenai apa itu barisan. Barisan adalah daftar bilangan yang dituliskan secara berurutan dari kiri ke kanan, di mana ia mempunyai pola atau karakteristik bilangan tertentu. Barisan biasanya disimbolkan dengan Un;

Sedangkan deret adalah penjumlahan dari suku-suku yang ada di dalam suatu barisan tertentu. Deret ini biasanya disimbolkan dengan Sn;

Kemudian aritmetika adalah ilmu berhitung dasar yang mencakup penjumlahan, pengurangan, perkalian, dan pembagian, yang ada di dalam cabang ilmu pengetahuan matematika. Psstt, inget lho, ejaan yang benar itu ‘aritmetika’, bukan ‘aritmatika’.

Rumus Baris dan Deret Aritmetika

Bentuk Umum Barisan Aritmetika

Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 297 dengan Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 298 bilangan asli

Rumus Suku ke-n

Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 299

atau

Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 300

Keterangan:

Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 301 = suku ke-n

Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 302 = a = suku pertama
n = jumlah atau banyaknya suku
b = beda atau selisih

Rumus Beda atau Selisih

Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 303

Keterangan:

b = beda atau selisih

Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 301 = suku ke-n
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 305 = suku sebelum suku ke-n

Rumus Suku Tengah

Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 306
atau

Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 307

Jika jumlah atau banyak suku dari suatu barisan aritmetika adalah ganjil, maka rumus untuk mencari suku tengahnya adalah sebagai berikut:

Keterangan:
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 308 = suku tengah
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 301 = suku terakhir
a = suku pertama
n = jumlah atau banyaknya suku

Kalau jumlah atau banyak sukunya genap, gimana tuh? Itu berarti barisan aritmetika tersebut nggak ada suku tengahnya, Sob.

Rumus Sisipan

Nah, gimana jadinya kalau elo menyisipkan bilangan dengan jumlah k ke dalam barisan aritmetika yang udah ada? Pastinya hal tersebut akan menyebabkan terbentuknya barisan aritmetika yang baru dan beberapa rumus di bawah ini juga ikut berubah, nih.

Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 310

atau

Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 311

Keterangan:

Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 312 = jumlah atau banyaknya suku barisan aritmetika baru
n = jumlah atau banyaknya suku barisan aritmetika lama
k = jumlah atau banyaknya bilangan yang disisipkan ke barisan aritmetika lama
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 313 = beda atau selisih barisan aritmetika baru
b = beda atau selisih barisan aritmetika lama

Rumus-Rumus Deret Aritmetika

Bentuk Umum Deret Aritmetika

Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 314 dengan Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 298 bilangan asli

Rumus Suku ke-n

Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 316
atau
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 317

Keterangan:
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 318 = suku ke-n
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 301 = suku ke-n
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 302 = a = suku pertama
n = jumlah atau banyaknya suku
b = beda atau selisih

Contoh Soal Barisan dan Deret Aritmatika

Biar elo semua makin pol ngerti, coba cermati beberapa contoh soal cerita barisan aritmatika dalam kehidupan sehari hari dan deret aritmetika di bawah ini, ya!

Contoh Soal 1

Terdapat sebuah barisan bilangan seperti berikut 3, 5, 7, 9, …
Berapakah suku ke-30 dari barisan tersebut?

Pembahasan
Diketahui:
a = 3
b = Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 321
= 5-3
= 2
Ditanyakan: U30?
Jawab:
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 322
= 3 + (30-1)2
= 3 + (29)2
= 3 + 58
= 61

Jadi, suku ke-30 dari barisan aritmetika tersebut adalah 61.

Contoh Soal 2

Terdapat sebuah barisan aritmetika sebagai berikut: 2, 6, 10, 14, …, 74. Berapa nilai suku tengahnya? Terletak pada suku ke berapa nilai tengah tersebut?

Pembahasan
Diketahui:
1. a = 2
2. b = Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 321
= 6-2
= 4
3. Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 301 = 74

Ditanyakan:

a). Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 308?

b). t suku tengah?

Jawab:
a). Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 308?
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 306
= 1/2(2+74)
= 1/2(76)
= 38

Jadi, nilai suku tengah dari barisan aritmetika tersebut adalah adalah 38.

b). t suku tengah?
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 328
74 = 2 + (n-1)4
74 = 2 + 4n-4
74 = 4n – 2
74 +2 = 4n
76 = 4n
76/4 = n
19 = n

Jadi, jumlah atau banyaknya suku ada 18.

t = 1/2(n +1)
t = 1/2(19 +1)
t = 1/2(20)
t = 10.

Maka, suku tengah pada barisan aritmetika tersebut terletak pada suku ke-10.

Contoh Soal 3

Terdapat sebuah barisan aritmetika sebagai berikut 20 + 18 + 16, …
Tentukan berapa jumlah 12 suku pertamanya!

Diketahui:
a = 20
b = 2
Ditanyakan: Sn?
Jawab:
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 316
Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 330 = Barisan dan Deret Aritmetika, Rumus Hingga Penerapannya 331 (20 + 20 + (12-1)2))
= 6 (40 + 24 – 2)
= 6 (62)
= 372.

Jadi, jumlah 12 suku pertama dari barisan aritmetika tersebut adalah 372.

B. Barisan dan Deret Geometri

Pengertian Barisan dan Deret Geometri

barisan dan deret geometri
Ilustrasi sempoa (Dok. Pixabay)

Barisan dan deret geometri adalah salah satu materi yang dipelajari dalam Matematika SMA. Barisan geometri adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui perkaliandengan suatu bilangan. 

Perbandingan atau rasio antara nilai suku-suku yang berdekatan selalu sama yaitu r. Nilai suku pertama dilambangkan dengan a.

Untuk mengetahui nilai suku ke-n dari suatu barisan geometri dapat dihitung dengan rumus berikut.

Barisan dan Deret Geometri - Materi Matematika Kelas 11 338

Sedangkan, deret geometri adalah penjumlahan suku-suku dari barisan geometri.

Penjumlahan dari suku-suku pertama sampai suku ke-n barisan geometri dapat dihitung dengan rumus berikut.

Barisan dan Deret Geometri - Materi Matematika Kelas 11 339

dengan syarat r < 1

atau

Barisan dan Deret Geometri - Materi Matematika Kelas 11 340

dengan syarat r > 1

Contoh Soal Barisan dan Deret Geometri

Contoh Soal 1: Soal Khusus

Selembar kertas dipotong menjadi dua bagian. Setiap bagian dipotong menjadi dua dan seterusnya. Jumlah potongan kertas setelah potongan kelima sama dengan… 

Pembahasan:

Diketahui: a = 1

r = 2

Ditanya: Barisan dan Deret Geometri - Materi Matematika Kelas 11 341

Jawab: 

Barisan dan Deret Geometri - Materi Matematika Kelas 11 342
Barisan dan Deret Geometri - Materi Matematika Kelas 11 343

= 16


Jadi, jumlah potongan kertas setelah potongan kelima adalah 16

Contoh Soal 2

Pada sebuah deret geometri diketahui bahwa suku pertamanya adalah 3 dan suku ke-9 adalah 768. Suku ke-7 deret tersebut adalah…

Pembahasan:

Diketahui: a = 3
Barisan dan Deret Geometri - Materi Matematika Kelas 11 344
Ditanya: Barisan dan Deret Geometri - Materi Matematika Kelas 11 345

Jawab:

Sebelum kita mencari nilai dari Barisan dan Deret Geometri - Materi Matematika Kelas 11 346 , kita akan mencari nilai r terlebih dahulu.

Ingat kembali bahwa Barisan dan Deret Geometri - Materi Matematika Kelas 11 347 sehingga  Barisan dan Deret Geometri - Materi Matematika Kelas 11 348 dapat ditulis menjadi

Barisan dan Deret Geometri - Materi Matematika Kelas 11 349
Barisan dan Deret Geometri - Materi Matematika Kelas 11 350
Barisan dan Deret Geometri - Materi Matematika Kelas 11 351
Barisan dan Deret Geometri - Materi Matematika Kelas 11 352
Barisan dan Deret Geometri - Materi Matematika Kelas 11 353
Barisan dan Deret Geometri - Materi Matematika Kelas 11 354

Sehingga,

Barisan dan Deret Geometri - Materi Matematika Kelas 11 355
Barisan dan Deret Geometri - Materi Matematika Kelas 11 356
Barisan dan Deret Geometri - Materi Matematika Kelas 11 357

Jadi, suku ke-7 deret tersebut adalah 192.

Contoh Soal 3

Diketahui suku ke-5 dari barisan geometri adalah 243, hasil bagi suku ke-9 dengan suku ke-6 adalah 27. Suku ke-2 dari barisan tersebut adalah…

Pembahasan

Dalam contoh soal barisan dan deret geometri di atas, diketahui Barisan dan Deret Geometri - Materi Matematika Kelas 11 358
Barisan dan Deret Geometri - Materi Matematika Kelas 11 359

Ditanya  Barisan dan Deret Geometri - Materi Matematika Kelas 11 360
Jawab:

Sebelum kita mencari nilai dari Barisan dan Deret Geometri - Materi Matematika Kelas 11 361, kita akan mencari nilai a dan r terlebih dahulu.

Ingat kembali Barisan dan Deret Geometri - Materi Matematika Kelas 11 347 maka

Barisan dan Deret Geometri - Materi Matematika Kelas 11 363
Barisan dan Deret Geometri - Materi Matematika Kelas 11 364
Barisan dan Deret Geometri - Materi Matematika Kelas 11 365
Barisan dan Deret Geometri - Materi Matematika Kelas 11 366

Substitusikan r = 3 ke persamaan  Barisan dan Deret Geometri - Materi Matematika Kelas 11 358

Barisan dan Deret Geometri - Materi Matematika Kelas 11 368
Barisan dan Deret Geometri - Materi Matematika Kelas 11 369
Barisan dan Deret Geometri - Materi Matematika Kelas 11 370
Barisan dan Deret Geometri - Materi Matematika Kelas 11 371

sehingga

Barisan dan Deret Geometri - Materi Matematika Kelas 11 372
Barisan dan Deret Geometri - Materi Matematika Kelas 11 373
= 9

Jadi, suku ke-2 dari barisan tersebut adalah 9.

Contoh Soal 4

Jumlah 6 suku pertama deret geometri 2 + 6 + 18 + … adalah…

Pembahasan

Diketahui: =  2

r = 3

ditanyakan Barisan dan Deret Geometri - Materi Matematika Kelas 11 374

Jawab:

Barisan dan Deret Geometri - Materi Matematika Kelas 11 340
Barisan dan Deret Geometri - Materi Matematika Kelas 11 376
Barisan dan Deret Geometri - Materi Matematika Kelas 11 377
Barisan dan Deret Geometri - Materi Matematika Kelas 11 378

Jadi, jumlah 6 suku pertama deret geometri tersebut adalah 728.

C. Bunga penyusutan pertumbuhan dan peluruhan.

1. Pertumbuhan

Pertumbuhan merupakan kenaikan atau pertambahan nilai suatu besaran terhadap besaran sebelumnya.Peristiwa yang termasuk dalam pertumbuhan adalah pertambahan penduduk dan perhitungan bunga majemuk di bank. Terdapat dua jenis pertumbuhan, yaitupertumbuhan eksponensial dan pertumbuhan linier.

rumus pertumbuhan matematika

Contoh:

Banyak penduduk kota A setiap tahun meningkat 2% secara eksponensial dari tahun sebelumnya. Tahun 2013 penduduk di kota A sebanyak 150.000 orang. Hitung banyak penduduk pada tahun 2014 dan 2023!

Jawab:

Capture.png

Banyak penduduk pada tahun 2014 (artinya 1 tahun setelah 2013, maka n = 1):

Capture-1.png

Banyak penduduk pada tahun 2023 (n=2023-2013=10):

pertumbuhan

2. Peluruhan

Peluruhan merupakan penurunan atau pengurangan nilai suatu besaran terhadap nilai besaran sebelumnya. Peristiwa yang termasuk dalam peluruhan (penyusutan) di antaranya adalah peluruhan zat radioaktif dan penurunan harga barang.

rumus peluruhan matematika

Contoh:

Suatu bahan radioaktif yang semula berukuran 125 gram mengalami reaksi kimia sehingga menyusut 12% dari ukuran sebelumnya setiap 12 jam secara eksponensial. Tentukan ukuran bahan radioaktif tersebut setelah 3 hari!

Jawab:

Capture-4.png

Peluruhan terjadi setiap 12 jam, sehari peluruhan terjadi 2 kali, 3 hari = 72 jam terjadi 6 kali peluruhan.

Capture-5.png

Capture-6.png

Referensi:

A:https://www.zenius.net/blog/barisan-dan-deret-aritmetika

B:https://www.zenius.net/blog/contoh-soal-barisan-dan-deret-geometri

C:https://www.ruangguru.com/blog/pertumbuhan-dan-peluruhan-matematika



Comments

Popular posts from this blog

Integral Fungsi Aljabar